Jumat, 04 November 2011

ORGANISASI DAN ARSITEKTUR KOMPUTER PERTEMUAN KE - 2

PERTEMUAN MINGGU KE-5

Arsitektur Set Instruksi

Set Instruksi (bahasa Inggris: Instruction Set, atau Instruction Set Architecture (ISA)) didefinisikan sebagai suatu aspek dalam arsitektur komputer yang dapat dilihat oleh para pemrogram. Secara umum, ISA ini mencakup jenis data yang didukung, jenis instruksi yang dipakai, jenis register, mode pengalamatan, arsitektur memori, penanganan interupsi, eksepsi, dan operasi I/O eksternalnya (jika ada).

JENIS INSTRUKSI

1.Data Processing

2.Data Storage

3.Data Movement

4.Control

Metode pengalamatan merupakan aspek dari set instruksi arsitekturdi sebagian unit pengolah pusat(CPU) desain yang didefinisikan dalam set instruksi arsitektur dan menentukan bagaimana bahasa mesinpetunjuk dalam arsitektur untuk mengidentifikasi operan dari setiap instruksi.. Sebuah mode pengalamatan menentukan bagaimana menghitung alamat memori yang efektif dari operand dengan menggunakan informasi yang diadakan di registerdan / atau konstanta yang terkandung dalam instruksi mesin atau di tempat lain.

Jenis-jenis metode pengamatan

1.Direct Absolute(pengalamatan langsung)

| load | reg address| | Load | reg | alamat

Alamat address = Efektif seperti yang diberikan dalam instruksi)

Hal ini membutuhkan ruang dalam sebuah instruksi untuk cukup alamat yang besar.. Hal ini sering tersedia di mesin CISC yang memiliki panjang instruksi variabel, seperti x86.. Beberapa mesin RISC memiliki Literal khusus Atas instruksi Load yang menempatkan sebuah 16-bit konstan di atas setengah dari register.. Sebuah literal instruksi ATAU dapat digunakan untuk menyisipkan 16-bit konstan di bagian bawah mendaftar itu, sehingga alamat 32-bit kemudian dapat digunakan melalui mode pengalamatan tidak langsung mendaftar, yang itu sendiri disediakan sebagai "base- plus-offset "dengan offset 0.

Syntax

Effectif adress

Loc

EA=Loc

Add,R1

R1←[R1]+[100]

Kelebihan

  • Field alamat berisi efektif address sebuah operand
  • Teknik ini banyak digunakan pada komputer lama dan komputer ecil
  • Hanya memerlukan sebuah referensi memori dan tidak memerlukan kalkulus khusus

Kelemahan

  • Keterbatasan field alamat karena panjang field alamat biasanya lebih kecil dibandingkan panjang word Contoh: ADD A ; tambahkan isi pada lokasi alamat A ke akumulator

2.Immidiate

Bentuk pengalamatan ini yang paling sederhana

  • Operand benar-benar ada dalam instruksi atau bagian dari instruksi = operand sama dengan field alamat
  • Umumnya bilangan akan disimpan dalam bentuk kompleent dua
  • Bit paling kiri sebagai bit tanda
  • Ketika operand dimuatkan ke dalam register data, bit tanda digeser ke kiri hingga maksimum word data Contoh: ADD 5 ; tambahkan 5 pada akumulator

Syntax

Effectif adress

#value

Operand=value

Add #10,R1

R1←[R1]+10

Keuntungan

Tidak adanya referensi memori selain dari instruksi yang diperlukan untuk memperoleh operand Menghemat siklus instruksi sehingga proses keseluruhan akan cepat

Kekurangan

Ukuran bilangan dibatasi oleh ukuran field alamat

3.indirect register

  • Metode pengalamatan register tidak langsung mirip dengan mode pengalamatan tidak langsung
  • Perbedaannya adalah field alamat mengacu pada alamat register.
  • Letak operand berada pada memori yang dituju oleh isi register
  • Keuntungan dan keterbatasan pengalamatan register tidak langsung pada dasarnya sama dengan pengalamatan tidak langsung

Keterbatasan field alamat diatasi dengan pengaksesan memori yang tidak langsung sehingga alamat yang dapat direferensi makin banyak Dalam satu siklus pengambilan dan penyimpanan, mode pengalamatan register tidak langsung hanya menggunakan satu referensi memori utama sehingga lebih cepat daripada mode pengalamatan tidak langsung

Syntax

Effectif adress

(Ri)

EA=[Ri]

Add,(R1),R1

R1←[R1]+[[R1]]

4.indirect- memori

Salah satu mode pengalamatan yang disebutkan dalam artikel ini bisa memiliki sedikit tambahan untuk menunjukkan pengalamatan tidak langsung, yaitu alamat dihitung menggunakan modus beberapa sebenarnya alamat dari suatu lokasi (biasanya lengkap kata) yang berisi alamat efektif sebenarnya. Pengalamatan tidak langsung dapat digunakan untuk kode atau data.. Hal ini dapat membuat pelaksanaan pointer atau referensi atau menanganilebih mudah, dan juga dapat membuat lebih mudah untuk memanggil subrutin yang tidak dinyatakan dialamati. Pengalamatan tidak langsung tidak membawa hukuman performansi karena akses memori tambahan terlibat.

Beberapa awal minicomputer (misalnya Desember PDP-8, Data General Nova) hanya memiliki beberapa register dan hanya rentang menangani terbatas (8 bit).Oleh karena itu penggunaan memori tidak langsung menangani hampir satu-satunya cara merujuk ke jumlah yang signifikan dari memori.

5.Register

Pada beberapa komputer, register dianggap sebagai menduduki 16 pertama 8 atau kata-kata dari memori (misalnya ICL 1900, DEC PDP-10).. Ini berarti bahwa tidak perlu bagi yang terpisah "Tambahkan register untuk mendaftarkan" instruksi - Anda hanya bisa menggunakan "menambahkan memori untuk mendaftar" instruksi. Dalam kasus model awal PDP-10, yang tidak memiliki memori cache, Anda benar-benar dapat memuat sebuah loop dalam ketat ke dalam beberapa kata pertama dari memori (register cepat sebenarnya), dan berjalan lebih cepat daripada di memori inti magnetik. Kemudian model dari DEC PDP-11seri memetakan register ke alamat di output / area input, tetapi ini ditujukan untuk memungkinkan diagnostik terpencil. register 16-bit dipetakan ke alamat berturut-turut byte 8-bit.

Syntax

Effectif adress

Ri

EA=Loc

Add,R2,R1

R1←[R1]+[R2]

6.Index

Indexing adalah field alamat mereferensi alamat memori utama, dan register yang direferensikan berisi pemindahan positif dari alamat tersebut

  • Merupakan kebalikan dari mode base register
  • Field alamat dianggap sebagai alamat memori dalam indexing
  • Manfaat penting dari indexing adalah untuk eksekusi program-program iteratif

Syntax

Effectif adress

X(R2)

EA=[R2]+X

Add 10(R2),R1

R1←[R1]+[[R2]+10]

7.Base index

Base index, register yang direferensi berisi sebuah alamat memori, dan field alamat berisi perpindahan dari alamat itu Referensi register dapat eksplisit maupun implicit.Memanfaatkan konsep lokalitas memori

Syntax

Effectif adress

R1,R2

EA=[R1]+[R2]

Add(R1,R2),R3

R3←[R3]+[[R1+[R2]]

8.base index plus offset

Offset biasanya nilai 16-bit masuk (walaupun 80386 diperluas ke 32 bit). Jika offset adalah nol, ini menjadi contoh dari register pengalamatan tidak langsung, alamat efektif hanya nilai dalam register dasar. Pada mesin RISC banyak, register 0 adalah tetap sebesar nilai nol.. Jika register 0 digunakan sebagai register dasar, ini menjadi sebuah contoh dari pengalamatan mutlak.. Namun, hanya sebagian kecil dari memori dapat diakses (64 kilobyte, jika offset adalah 16 bit). 16-bit offset mungkin tampak sangat kecil sehubungan dengan ukuran memori komputer saat ini (yang mengapa 80386 diperluas ke 32-bit).. Ini bisa lebih buruk: IBM System/360 mainframe hanya memiliki 12-bit unsigned offset.. Namun, prinsip berlaku: selama rentang waktu yang singkat, sebagian besar item data program ingin mengakses cukup dekat satu sama lain. Mode pengalamatan ini terkait erat dengan mode pengalamatan terindeks mutlak. Contoh 1: Dalam sebuah sub rutin programmer terutama akan tertarik dengan parameter dan variabel lokal, yang jarang akan melebihi 64 KB, yang satu basis register (yang frame pointer) sudah cukup. Jika rutin ini adalah metode kelas dalam bahasa berorientasi objek, kemudian register dasar kedua diperlukan yang menunjuk pada atribut untuk objek saat ini (ini atau diri dalam beberapa bahasa tingkat tinggi). Contoh 2: Jika register dasar berisi alamat dari sebuah tipe komposit (record atau struktur), offset dapat digunakan untuk memilih field dari record (catatan paling / struktur kurang dari 32 kB).

Syntax

Effectif adress

X(R2)

EA=+[R1]+[R2]+X

Add,10(R1,R2),R3

R3←[[R3]+][R1]+[R2]]+10}

9.Relatif

PengalamatanRelative, register yang direferensi secara implisit adalah program counter (PC)Alamat efektif didapatkan dari alamat instruksi saat itu ditambahkan ke field alamat Memanfaatkan konsep lokalitas memori untuk menyediakan operand-operand berikutnya

Syntax

Effectif adress

Ri

EA=Ri

Add R2,R1

R1←[R1]+[R2]

Desain Set Instruksi

Desain set instruksi merupakan masalah yang sangat komplek yang melibatkan banyak aspek, diantaranya adalah:

1. Kelengkapan set instruksi

2. Ortogonalitas (sifat independensi instruksi)

3. Kompatibilitas :

-source code compatibility

-Object code Compatibility

Selain ketiga aspek tersebut juga melibatkan hal-hal sebagai

berikut :

a. Operation Repertoire: Berapa banyak dan operasi apa saja yang disediakan, dan berapa sulit

operasinya

b. Data Types: tipe/jenis data yang dapat olah

c. Instruction Format: panjangnya, banyaknya alamat,dsb.

d. Register: Banyaknya register yang dapat digunakan

e. Addressing: Mode pengalamatan untuk operand

CPU

Perangkat pengolah atau pemroses data dalam komputer adalah prosesor atau lengkapnya adalah mikroprosesor, namun umumnya pengguna komputer menyebutnya sebagai CPU (Central Processor Unit). CPU merupakan otak bagi sebuah system komputer. CPU memiliki 3 komponen utama yang merupakan bagian tugas utamanya yaitu unit kendali (Control Unit – CU) , unit aritmetika dan logika (Aritmetic and Logic Unit – ALU) serta komponen register yang berfungsi membantu melakukan hubungan (interface) dari dan ke memori. Tugas CPU adalah melaksanakan dan mengawal keseluruhan operasi komputer sehingga bisa dikatakan hampir keseluruhan pemikiran dilaksanakan disini, sehingga sering dinamakan sebagai otak komputer. CPU Tempatnya terletak pada papan induk (motherboard) pada bagian inilah juga terletak segala pusat perangkat komputer seperti memori, port input –output (I/O) dan sebagainya.


Pengertian Bus

Peralatan yang terhubung bersama akan berkomunikasi melalui bus alamat,

data dan control. Ketika suatu devais ingin berkomunikasi dengan lainnya, ia
mengirima alamat untuk membedakan dengan devais lainnya, dimana tiap devais
mempunyai alamat yang unik. Devais master ialah devais yang menginisiasi dan
mengontrol komunikasi, sedangkan devais perespon disebut sebagai slave.

Untuk mengkoordinasikan aktifitas diantara bagian sistem komputer, bus-bus

harus mengikuti aturan pewaktuan dan sinyal yang spesifik. Protocol bus merefer
pada spesifikasi untuk sebuah bus. Protokol bus yang umum ialah synchronous dan
asynchronous. Pada protokol synchronous, aktifitas bus disinkronkan dengan
frekwensi pusat yaitu frekwensi sistem. Pada IBM PC, CPU mengakses memori
menggunakan protokol synchronous.

Motherboard PC kita terdiri dari beberapa bus yang menghantarkan sinyal

antar masing-masing komponen. Bus sering disebut juga dengan lintasan umum yang
digunakan untuk transfer data. Jalur ini juga dapat untuk komunikasi antar dua buah
komputer atau lebih.yang mana di dalam motherboard ini mempunyai tiga macam bus
yang disusun secara hirarkis, bus yang lambat di hubungkan di bawah bus yang cepat.
Setiap peripheral komputer terhubung pada salah satu dari bus-bus ini, dan chipset
berfungsi sebagai jembatan atas bus yang berbeda.

Organisasi Bus

Organsiasi bus merupakan sekumpulan dari bagian-bagian bus dimana tersusun menjadi satu yang memungkinkan suatu bus dapat bekerja dan dilakukan. Adapun bagian tersebut yaitu seperti Pengertian jalur tidak sama dengan saluran. Dalam hal ini, jalur adalah kata jamak dari saluran. Pahamilah penjelasan berikut ini: Jalur data (data bus) yang terdiri dari beberapa (sejumlah) saluran data, jalur adres (address bus) terdiri dari beberapa (sejumlah) saluran adreess dan jalur kontrol (control bus) terdiri dari beberapa (sejumlah) saluran kontrol

Struktur Bus

Sebuah bus sistem terdiri dari 50 hingga 100 saluran yang terpisah. Masing-masing saluran ditandai dengan arti dan fungsi khusus. Walaupun terdapat sejumlah rancangan bus yang berlainan, fungsi saluran bus dapat diklasifikasikan menjadi tiga kelompok, yaitu saluran data, saluran alamat, dan saluran kontrol. Selain itu, terdapat pula saluran distribusi daya yang memberikan kebutuhan daya bagi modul yang terhubung.

A. Saluran Data

Saluran data memberikan lintasan bagi perpindahan data antara dua modul sistem. Saluran ini secara kolektif disebut bus data. Umumnya bus data terdiri dari 8, 16, 32 saluran, jumlah saluran diakitakan denang lebar bus data. Karena pada suatu saat tertentu masing-masing saluran hanya dapat membawa 1 bit, maka jumlah saluran menentukan jumlah bit yang dapat dipindahkan pada suatu saat. Lebar bus data merupakan faktor penting dalam menentukan kinerja sistem secara keseluruhan. Misalnya, bila bus data lebarnya 8 bit, dan setiap instruksi panjangnya 16 bit, maka CPU harus dua kali mengakses modul memori dalam setiap siklus instruksinya.

B. Saluran Alamat

Saluran alamat digunakan untuk menandakan sumber atau tujuan data pada bus data. Misalnya, bila CPU akan membaca sebuah word data dari memori, maka CPU akan menaruh alamat word yang dimaksud pada saluran alamat. Lebar bus alamat akan menentukan kapasitas memori maksimum sistem. Selain itu, umumnya saluran alamat juga dipakai untuk mengalamati port-port input/outoput. Biasanya, bit-bit berorde lebih tinggi dipakai untuk memilih lokasi memori atau port I/O pada modul.

C. Saluran Kontrol

Saluran kontrol digunakan untuk mengntrol akses ke saluran alamat dan penggunaan data dan saluran alamat. Karena data dan saluran alamat dipakai bersama oleh seluruh komponen, maka harus ada alat untuk mengontrol penggunaannya. Sinyal-sinyal kontrol melakukan transmisi baik perintah maupun informasi pewaktuan diantara modul-modul sistem. Sinyal-sinyal pewaktuan menunjukkan validitas data dan informasi alamat. Sinyal-sinyal perintah mespesifikasikan operasi-operasi yang akan dibentuk. Umumnya saluran kontrol meliputi : memory write, memory read, I/O write, I/O read, transfer ACK, bus request, bus grant, interrupt request, interrupt ACK, clock, reset.

Koneksi Bus

Koneksi bus merupakan suatu hubungan dimana antara bus yang satu dengan yang lainnya saling berhubungan. Oleh karena itu perlu adanya koneksi agar bus bus tersebut dapat saling berhubungan dan berkomuniaksi. Tanpa adanya koneksi maka bus tersebut juga tidak dapat bekerja. Bus tidak dapat melakukan hubungan atau komunikasi dengan bus yang lainnya.

Tipe Bus

Bus dibedakan menjadi bus yang khusus menyalurkan data tertentu, misalnya paket data saja, atau alamat saja, jenis ini disebut dedicated bus. Namun apabila bus dilalukan informasi yang berbeda baik data, alamat maupun sinyal kontrol dengan metode mulipleks data maka bus ini disebut multiplexed bus. Keuntungan mulitiplexed bus adalah hanya memerlukan saluran sedikit sehingga dapat menghemat tempat, namun kerugiannya adalah kecepatan transfer data menurun dan diperlukan mekanisme yang komplek untuk mengurai data yang telah dimulitipleks. Saat ini yang umum, bus didedikasikan untuk tiga macam, yaitu bus data, bus alamat dan bus kontrol.

ALU

ALU unit yang bertugas untuk melakukan operasi aritmetika dan operasi logika berdasar instruksi yang ditentukan. ALU sering di sebut mesin bahasa karena bagian ini ALU terdiri dari dua bagian, yaitu unit arithmetika dan unit logika boolean yang masing-masing memiliki spesifikasi tugas tersendiri. Tugas utama dari ALU adalah melakukan semua perhitungan aritmatika (matematika) yang terjadi sesuai dengan instruksi program. ALU melakukan semua operasi aritmatika dengan dasar penjumlahan sehingga sirkuit elektronik yang digunakan disebut adder.

Tugas lain dari ALU adalah melakukan keputusan dari suatu operasi logika sesuai dengan instruksi program. Operasi logika meliputi perbandingan dua operand dengan menggunakan operator logika tertentu, yaitu sama dengan (=), tidak sama dengan (¹ ), kurang dari (<), kurang atau sama dengan (£ ), lebih besar dari (>), dan lebih besar atau sama dengan .

CU ( Control Unit )

Merupakan komponen utama prosesor yang menbgontrol semua perangkat yang terpasang pada computer, mulai dari input device sampai output device.

Tugas dari CU adalah sebagai berikut:

  1. Mengatur dan mengendalikan alat-alat input dan output.
  2. Mengambil instruksi-instruksi dari memori utama.
  3. Mengambil data dari memori utama kalau diperlukan oleh proses.
  4. Mengirim instruksi ke ALU bila ada perhitungan aritmatika atau perbandingan logika serta mengawasi kerja.
  5. Menyimpan hasil proses ke memori utama.

Register

Register merupakan alat penyimpanan kecil yang mempunyai kecepatan akses cukup tinggi, yang digunakan untuk menyimpan data dan/atau instruksi yang sedang diproses. Memori ini bersifat sementara, biasanya di gunakan untuk menyimpan data saat di olah ataupun data untuk pengolahan selanjutnya. Secara analogi, register ini dapat diibaratkan sebagai ingatan di otak bila kita melakukan pengolahan data secara manual, sehingga otak dapat diibaratkan sebagai CPU, yang berisi ingatan-ingatan, satuan kendali yang mengatur seluruh kegiatan tubuh dan mempunyai tempat untuk melakukan perhitungan dan perbandingan logika.

REFERENSI :

id.wikipedia.org/wiki/Set_instruksi

ocw.gunadarma.ac.id/.../arsitektur-komputer/arsitektur-set-instruksi

blog.unikom.ac.id/10109472/1KI.Metode-pengalamatan.html

dc384.4shared.com/doc/jH0ElUrC/preview.html

Tidak ada komentar:

Posting Komentar